
lable at ScienceDirect

Environmental Modelling & Software xxx (2014) 1e13
Contents lists avai
Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft
A methodology and an optimization tool to calibrate phenology of
short-day species included in the APSIM PLANT model: Application to
soybean

Sotirios V. Archontoulis*, Fernando E. Miguez, Kenneth J. Moore
Department of Agronomy, Iowa State University, Agronomy Hall, Ames, IA 50011, USA
a r t i c l e i n f o

Article history:
Received 11 November 2013
Received in revised form
6 February 2014
Accepted 11 April 2014
Available online xxx

Keywords:
Soybean
Phenology
Modelling
Optimization
Photoperiod
APSIM
* Corresponding author.
E-mail addresses: sarchont@iastate.edu, sarchont@

http://dx.doi.org/10.1016/j.envsoft.2014.04.009
1364-8152/� 2014 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Archontou
included in the APSIM PLANT model: Ap
j.envsoft.2014.04.009
a b s t r a c t

We developed a methodology and an optimization tool that simplifies calibration of the APSIM PLANT
multi parameter input phenology module. The methodology and the tool were successfully applied to
estimate phenological parameters for 40 soybean cultivars covering maturity groups from 00 to 6. Our
approach utilized information on flowering, physiological maturity and soybean maturity group, and
provided a complete set of phenological parameters for APSIM that accounted also for
temperature � photoperiod interactions throughout the crop cycle. The model predicted flowering (root
mean square error, RMSE ¼ 3.1 d) and physiological maturity (RMSE ¼ 5.5 d) very well in a range of
environments across the USA (33e46�N latitude, n ¼ 280). The relative absolute error was below 3% in all
cases indicating the robustness of our approach. The APSIM PLANT phenology module is generic, thus
our approach can be applied to all the short-day species included in the modelling platform.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Accurate simulation of crop phenology should be the first pri-
ority when calibrating simulation crop models. Phenology captures
much of the genotypic variation and drives many crop-related
processes in simulation models such as leaf area development,
biomass production and partitioning, and also N fixation in legume
species (Robertson et al., 2002). Given that phenology varies greatly
among cultivars and its significant impact on crop growth simula-
tion, phenological parameters need to be estimated every time that
a new cultivar/hybrid is introduced. The lack of cultivar specific
information (mainly on phenology) and the short commercial life of
the cultivars impose major constrains in the application of the crop
models in different locations. This is particular evident in the new
era of crop model application, where multi-input parameters
process-based point models are being evaluated at the regional
scale (Elliott et al., 2014; Moen et al., 1994; Rosenzweig et al., 2013;
van Wart et al., 2013). Setiyono et al. (2007, 2010) argued that for
practical applications it is difficult to utilize a phenological model
that requires numerous input parameters, especially when a
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minimum amount of information is available for calibration. They
developed a new model for soybean that moves away from the use
of multiple cultivar-specific input parameters, which are frequently
not available or difficult to measure, to a more generic parameter-
ization based on soybean maturity group (MG) and growth type
(determinate and indeterminate). They also showed that this over-
simplification did not impact phenology predictions significantly
(Setiyono et al., 2007; Torrion et al., 2011). Other modellers have
utilized the concept of the “generic cultivars” in an effort to cope
with limited cultivar information (Boote et al., 2003; Yang et al.,
2004).

Theoretically, an option to enhance the potential applicability of
process-basedmodels is for modellers to share cultivar information
across modelling platforms. In practice, this is difficult because the
phenological modules included in process-based models differ in
one or more of the following aspects: phase definition, number of
phases, cardinal temperature and temperature response function,
photoperiod parameters and photoperiod response function, and
methodology used to define phase duration (or phase targets). For
example the definition and the number of phases included in the
APSIM-soybean phenological module (Robertson et al., 2002;
Keating et al., 2003) has many similarities with the phases
defined in DSSAT-CROPGRO-soybean phenology module (Boote
et al., 1998; Jones et al., 2000), it also has some similarities with
and an optimization tool to calibrate phenology of short-day species
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Table 1
List of parameters and acronyms used in this study, with their definitions, values and
units. F(t) indicates that the duration of a crop phase is a function of temperature.
F(p) indicates that the duration of a phase is a function of photoperiod.

Parameter
or acronym

Definition Value or
range

Unit

MG Soybean maturity groups 00eVI e

DAS Days after sowing e d
SOW_VE Sowing to emergence phase Fixed d or �C-d
VE_JUV Emergence to end of juvenile phase F(t) d or �C-d
JUV_FI End of juvenile to floral initiation

phase
F(t) and F(p) d or �C-d

FI_FL Floral initiation to flowering phase F(t) and F(p) d or �C-d
FL_SD Flowering to start seed filling phase F(t) and F(p) d or �C-d
SD_END Start to end of seed filling phase F(t) and F(p) d or �C-d
END_PM End seed filling to phenological

maturity
F(t) d or �C-d

Tb Base temperature below which the
development rate is zero

10a �C

To Optimum temperature for maximum
development rate

30 �C

Tm Maximum temperature above which
the development rate is zero

40 �C

sun_angle Civil twilight 0 Degrees
P Photoperiod (the length of

the daylight)
0e24 Hours

Pcrit
b Daylength above which the rate of

development is sensitive to P
12.5e14.3 Hours

Pcrit1 Pcrit for pre-flowering phases
(JUV_FI and FI_FL)

12.5e14.3 Hours

Pcrit2 Pcrit for post-flowering phases
(FL_SD and SD_END)

12.5e14.3 Hours

Psen
c Photoperiodic sensitivity coefficient 0.15e0.31 1/hours

Psen1 Psen for pre-flowering phases
(JUV_FI and FI_FL)

0.15e0.31 1/hours

Psen2 Psen for post-flowering phases
(FL_SD and SD_END)

0.15e0.31 1/hours

a1
d Optimum or physiological days to

complete VE_JUV
5 d

a2 Optimum or physiological days to
complete JUV_FI

5 d

a3 Optimum or physiological days to
complete FI_FL

1e15 d

a4 Optimum or physiological days to
complete FL_SD

9e17 d

a5 Optimum or physiological days to
complete SD_END

19e35 d

a6 Optimum or physiological days to
complete END_PM

1 d

a APSIM-soybean default values.
b Use of the Pcrit parameter assumes Pcrit¼ Pcrit1 ¼ Pcrit2. Values for Pcrit were taken

from Boote et al. (2003).
c Use of the Psen parameter assumes Psen¼ Psen1¼ Psen2. Values for Psen were taken

from Boote et al. (2003).
d An optimum or physiological day is defined as a calendar day in which tem-

perature equals To and P< Pcrit. Bymultiplying the “aj” parameter with the term (Toe
Tb), a phase target is converted from d to �C-d.
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the phases defined in SOYDEV (Setiyono et al., 2007) and it differs
substantially compared to the phenological module included in the
GECROS model (Yin and van Laar, 2005). On the other hand, the
cardinal temperatures used, the temperature response functions
and the methodology used to calculate phase “targets” in APSIM-
soybean is much different compared to all the aforementioned
models. Therefore, estimation of cultivar phenological parameters
becomes specific for each model.

In crop models, the duration of every phase is determined by a
target, which is usually expressed as thermal time target (�C-d) or
number of optimum/physiological days (d). This target is modified
by day-length in photoperiod sensitive species such as soybean
(Glycine max [L.] Merr). Therefore in short or long day species the
calculation of the target becomes very complex because the target
varies dynamically with annual day-length fluctuations. The
complexity in modelling phenology increases as the number of
photoperiod sensitive phases included in the model increases. In
the literature there are different methodologies to model
temperature � photoperiod interactions; for an updated summary
of those see Setiyono et al. (2007). Among them, the multiplicative
method is widely used in many crop models such as DSSAT-
CROPGRO, GECROS and SOYDEV. In this method, temperature and
photoperiod functions are used as 0e1 modifiers to adjust the
optimum rate of development (unit d�1). A phase is completed
when the accumulated daily rate of development has reached a
target (e.g. 10 physiological days). Another approach is the thermal
time target method (Carberry et al., 1992; Holzworth and Hammer,
1996; Carberry et al., 2001) that is used in the APSIM simulation
platform. In this method, temperature is used to calculate daily
thermal time (�C-d) and photoperiod to define the target as a
function of day of the year. A phase is completed when the accu-
mulated thermal time has reached the target. Though the multi-
plicative and the thermal time approach have conceptual
differences, they both utilize the same input parameters (To, Tb, Tm,
Pcrit, Psen, aj; see Table 1 for acronyms definitions). The link between
the two methods is illustrated in Fig. 1.

Irrespective of the methodology used, to develop parameters for
a photoperiod sensitive phase multiple data points are needed.
These data can be derived from field experiments with different
sowing dates, years and locations or sophisticated greenhouse ex-
periments (Grimm et al., 1993,1994; Yin et al., 1997). It is possible to
estimate phenological parameters from a single season observa-
tions by ignoring the photoperiod effect (Mohanty et al., 2012) but
in this case the potential applicability of the crop model is limited.

An alternative approach for calibrating phenological parame-
ters of photoperiod-sensitive species is to adapt optimization al-
gorithms specifically for phenological parameters. Inclusion of
optimization tools along with initial parameter values (i.e. generic
coefficients) into the structure of a crop model is a very desirable
feature. Such an example is the GENCALC (Hunt et al., 1993) or the
more recent GLUE optimization program (Jones et al., 2011) that is
included in the release of the DSSAT models (Hoogenboom et al.,
2012). These tools allow DSSAT users to calibrate phenological
parameters (and a few other crop parameters) of photoperiod-
sensitive plants from few observations. DEVEL2 is another
generic optimization program (Holzworth and Hammer, 1996)
with many applications relevant to the APSIM model (Birch et al.,
1998; Soltani et al., 2006). The NAG (1983) is a dedicated opti-
mizer that has been used to estimate phenological parameters for
APSIM crops (Carberry et al., 2001; Turpin et al., 2003; Farre et al.,
2004). To our knowledge, these tools have not been operationally
available to APSIM users and neither were they designed to
optimize phenological parameters for species having sensitivity
to photoperiod in both pre- and post-flowering phases. For
example, Turpin et al. (2003) added functions into the NAG
Please cite this article in press as: Archontoulis, S.V., et al., A methodology
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optimizer to estimate post-flowering photoperiodic parameters
for faba bean. We believe that development of an optimization
tool for APSIM to simplify phenology calibration would be ad-
vantageous for everyone working with the model, especially for
those dealing with new cultivars that are responsive to
photoperiod.

The phenology module of the APSIM generic PLANT model
provides a very flexible way to specify phenological parameters for
each phase separately. Instead of using a fixed equation (i.e. linear,
exponential) for the photoperiod sensitive phases, it allows the
user to specify “x/y pairs” and the model reads the derived rela-
tionship by linear interpolation between the points (Holzworth and
Huth, 2009). The user can input up to five X-values (photoperiod)
and five Y-values (cumulative thermal time) and therefore it can
produce a variety of relationships between photoperiod and
and an optimization tool to calibrate phenology of short-day species
onmental Modelling & Software (2014), http://dx.doi.org/10.1016/



Fig. 1. Top panels: example shapes for temperature (panel a) and photoperiod (panel b) modifiers used by the multiplicative model: Rate ¼ Rate_max , f(T) , f(P) in d�1 (see
symbols explanations in Table 1). Bottom panels: temperature (panel c) and photoperiod (panel d) functions used by the thermal time target method. The two lines in panel (b)
show that the photoperiod modifiers in soybean are strongly affected by maturity group. In this example, the lines were produced by using Psen and Pcrit coefficients from Boote et al.
(2003) for maturity groups I and IV, respectively. Psen is the photoperiodic sensitivity (slope of the line; panel b) and Pcrit is the critical photoperiod (vertical arrows; panel c). The
panel (d) is analogous to panel (b), but it reports actual thermal time values (the targets) instead of 0e1 fraction values. The term aj refers to the number of optimum days
(¼calendar day in which the air temperature equals To and the actual photoperiod is below Pcrit).
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thermal time. This functionality allowed the APSIM team to utilize
the same phenological module for the majority of the species
belonging to the generic PLANT model (wheat, soybean, peanut,
alfalfa, lupin, canola, chickpea, cowpea, faba bean, etc.; Wang et al.,
2002; Robertson et al., 2002; Keating et al., 2003). The drawback of
this method is that it is difficult to calibrate phenological parame-
ters for new cultivars when only few observations are available. The
reason is that several combinations of “x/y pairs” can provide the
same result (equifinality), while the prediction ability and the
behaviour of the phenological model in different environments is
highly uncertain. The difficulty increases when information on
calibrated cultivars in the model database is limited. For example,
the APSIM-soybean model (version 7.5) contains few cultivars in
the database, which do not include photoperiod effect in post-
flowering phenology, even though it is known that such an effect
exists (Grimm et al., 1994; Setiyono et al., 2007). This feature makes
calibration of new soybean cultivars difficult and in general con-
strains the applicability of the APSIM soybean model in areas in
which soybean is an important commodity, such as the U.S. Corn
Belt region which accounts for 75% of US soybean production and
30% of global soybean production (Setiyono et al., 2010 and refer-
ences therein). In general, APSIM-soybean was chosen for two
reasons: a) the model attempts to chart a middle course between
two types of models, a simple one (Sinclair, 1986) and a very
detailed one (CROPGRO-soybean; Boote et al., 1998), so that crop
growth and development can be simulated with satisfactory
comprehensiveness, without the necessity of defining a large
number of parameters (Robertson et al., 2002); b) belongs to a
Please cite this article in press as: Archontoulis, S.V., et al., A methodology
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cropping systems simulation platform, which allows investigation
of complex systems questions such as crop rotation (Keating et al.,
2003) which cannot be investigated from stand-alone crop models.

The overall goal of this study is to expand the potential appli-
cability of the APSIM-soybean model by developing new cultivars
that cover a wide range of environmental conditions (33�e46�N
latitude). More specifically, our first objective is to present and
analyse a new methodology and an optimization tool that allows
APSIM researchers to calibrate soybean phenological parameters
from available information on flowering, physiological maturity
and soybean maturity group number. The second objective is to
make use of this tool (methodology and optimizer) and to produce
phenological parameters for 40 different soybean cultivars covering
a range of maturity groups (00eVI). The final objective is to eval-
uate the performance of the calibrated APSIM-soybean phenology
module by conducting sensibility tests, i.e. investigate soybean
adaptability in the USA and compare model predictions against
soybean adaptability maps available in the literature (Zhang et al.,
2007; Pedersen, 2009). Soybean is a representative of the short
day species included in the generic PLANT model. This means that
our approach can be applied to all the short day species and
especially legume species included in the APSIM crop database.

2. Materials and methods

2.1. The APSIM model

APSIM (Agricultural Production Systems sIMulator) is an agricultural systems
model that incorporates many crop and soil models into its structure and it is used
worldwide to address various cropping systems aspects (Keating et al., 2003). The
and an optimization tool to calibrate phenology of short-day species
onmental Modelling & Software (2014), http://dx.doi.org/10.1016/
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majority of the crop models are structured around a generic PLANT model (Wang
et al., 2002), in which crops share many functional relationships that determine
plant growth and development. A full description of all APSIM’s modules can be
found at www.aspim.info. Hereinwe describe the generic PLANT phenology module
with emphasis on soybean.

2.2. The phenology module

The generic PLANT phenology model can be summarized by the following
equation:

Crop cycle ¼ SOW VEþ VE JUVþ JUV FIþ FI FL þ FL SDþ SD ENDþ END PM
(1)

where:

VE JUV ¼ ðTo � TbÞa1

JUV FI ¼ ðTo � TbÞa2
1� Psen1ðP � Pcrit1Þ

FI FL ¼ ðTo � TbÞa3
1� Psen1ðP � Pcrit1Þ

FL SD ¼ ðTo � TbÞa4
1� Psen2ðP � Pcrit2Þ

SD END ¼ ðTo � TbÞa5
1� Psen2ðP � Pcrit2Þ

END PM ¼ ðTo � TbÞa6
The corresponding symbol explanations are provided in Table 1. The generic

PLANT phenology model utilizes the thermal time method to define phase targets
(Fig. 1c and d). The targets are described in terms of thermal time requirement
(phases: SOW_VE, VE_JUV, END_PM) or thermal time requirement modified by
photoperiod (phases: JUV_FI, FI_FL, FL_SD, SD_END).

The SOW_VE phase is subdivided into two sub-phases: sowing to germination
and germination to emergence. The duration of this phase is determined by sowing
depth, air temperature, soil moisture and a number of seederelated parameters
(Keating et al., 2003). Because prediction of this phase requires inputs on soil water
and use of a water balance model as well, we fixed this phase from inputs on sowing
and emergence dates.

The VE_JUV phase is driven by temperature and is defined as the period of
development in which the rate of development is not influenced by photoperiod.
Therefore, the thermal time target is a constant value (Table 1). For soybean plants,
the end of juvenile phase is around the V1 stage (Wilkerson et al., 1989) according to
the coding system of Fehr and Caviness (1977).

The phase JUV_FI is determined by temperature and photoperiod and ends at
floral initiation. The phase FI_FL is affected by temperature and photoperiod and it is
completed when 50% of the plants have one flower at any node (equivalent to R1
stage; Fehr and Caviness, 1977). The thermal time target varies dynamically with
annual day-length fluctuations (Fig. 1d; Table 1). The phases FL_SD and SD_END are
determined by temperature and photoperiod and refer to the period from flowering
to the start of grain fill and from start to the end of the grain fill period, respectively.
For the pre-flowering phases (JUV_FI and FI_FL) and post-flowering phases (FL_SD
and SD_END) we used different critical photoperiod (Pcrit1 and Pcrit2; Table 1) and
photoperiod sensitivities (Psen1 and Psen2; Table 1) parameters to add flexibility in
the model and to be consistent with literature findings on soybean phenology
(Grimm et al., 1993, 1994; Setiyono et al., 2007). In case of no available information,
pre- and post-flowering photoperiodic parameters can be assumed the same.

The phase END_PM is determined by temperature and it is completed when 50%
of the plants have reached physiological maturity (equivalent to R7; Fehr and
Caviness, 1977). In APSIM there is one more phase that is not listed in Eq (1). It is
the phase from physiological maturity to harvest ripe, which is not relevant in our
study.

2.3. Methodology to estimate phenological parameters

We propose use of the Eq. (1) to estimate phenological parameters for soybean
and more generally for the short day species included in APSIM that are included in
the generic PLANT model. Eq. (1) is a compound non-linear equation with biologi-
cally meaningful parameters (Table 1). Therefore, some of the parameters can be
optimized by using appropriate statistical techniques, well defined starting values
and adequate datasets. Our approach to developing phenology parameters for
soybean cultivars is summarized in the following steps: (1) compiled a database
with soybean phenological information from the literature (Table 2); (2) utilized
photoperiodic parameters from the literature (Boote et al., 2003), conducted a
sensitivity analysis to identify critical parameters for optimization and developed
starting values (Table 3); (3) implemented the generic PLANT phenology module
into the R package; (4) selected an appropriate parameter estimation algorithm and
Please cite this article in press as: Archontoulis, S.V., et al., A methodology
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optimized some parameters and (5) converted parameters to APSIM format, created
new (phenology driven) cultivars, incorporated them into the APSIM-soybean
model and tested them against the experimental data. In the future, steps 4 and 5
can be coupled.

2.3.1. Databases with phenological and weather data
Table 2 illustrates the datasets used in this study (n¼ 280). The data cover awide

range of maturity groups (from 00 to 6) and experimental sites across the USA (from
33� to 44�N). Information on sowing, emergence, flowering and physiological
maturity were extracted from figures or taken from tables.When the emergence day
was not provided, then simulated emergence day from the APSIM model was used.
Weather data for each site were extracted from “daymet” using the reported co-
ordinates (http://daymet.ornl.gov/) (Thornton et al., 2012). Daymet is a collection of
algorithms and computer software designed to interpolate and extrapolate weather
data from ground-based meteorological stations to produce gridded estimates of
daily weather parameters at 1 km � 1 km resolution. The raw data (maximum and
minimum temperature, precipitation, and radiation) were converted to the APSIM
format (.met) using an excel-macro converter (Iowa State University; the converter
is available upon request). Photoperiod is calculated by APSIM as a function of
latitude, day of the year, and twilight (sun angle) (Keating et al., 2003).

2.3.2. Soybean initial parameters, sensitivity analysis and assumptions
Eq. (1) has several input parameters (Table 1). Parameters defining cardinal

temperatures (Table 1) and the shape of the temperature response function (Fig. 1c)
were kept similar to APSIM-soybean. Parameters describing photoperiod effects, Pcrit
and Psen for each maturity group (Table 3), were taken from Boote et al. (2003). Note
that these parameters were derived from a re-analysis of the detailed work done by
Grimm et al. (1993, 1994) on soybean phenology. Parameters a1 to a6 (Table 1) were
initially taken from Boote et al. (2003), but re-analysed to fit APSIM-phenological
phases and re-calibrated manually to get more representative starting values
(Table 3). The reason for this preliminary calibration was the large difference that
existed between the temperature response functions used by APSIM-soybean and by
DSSAT-CROPGRO-soybean (Jones et al., 2000). The preliminary calibration of the a1
to a6 parameters resulted in lower initial values.

We conducted a sensitivity analysis to identify the most critical parameters for
estimation. Among the parameters included in Eq. (1) we initially prioritized for
optimization the following: a3, [a4 þ a5], Pcrit and Psen (Table 1), and assumed equal
Pcrit and Psen values for pre- and post-flowering phases, a1¼5 d, a2¼ 5 d and a6¼ 1 d
(Table 1; see discussion section) in order to get a reasonable number of parameters
to be estimated through optimization. Ideally, it would desirable to get estimates for
all the coefficients but this is constrained by limitations in statistical approaches and
lack of adequate datasets.

2.3.3. The optimization program
The R software (R Development Core Team, 2005) is widely used in agronomic

research to optimize parameters. We incorporated the necessary functions into R so
that it was possible to replicate APSIM soybean phenology predictions to a high
degree of agreement (Fig. 2). The developed R phenology program calculates:

a) daily photoperiod as a function of day of the year, latitude and solar angle;
b) daily thermal time using the 3-h interpolation method and pre-specified tem-

perature/thermal-time relationships (Fig. 1c). We have also added more
temperature/thermal-time functions which have different shapes, to allow the
investigation of variable responses (Fig. S1 in the supplementary materials)

c) ASPIM’s phenological stages as described in Eq. (1).

Briefly, the R optimization programworks as follows. Firstly, it defines the phase
targets as a function of daily photoperiod for the JUV_FI, FI_FL, FL_SD, and SD_END
phases, and reads constant values for the SOW_VE, VE_JUV, and END_PM phases.
The photoperiod driven targets are calculated from the equation presented in Fig.1d.
Secondly, starting at sowing, it calculates and accumulates thermal time until a
target has been reached, which signals the end of a phase. Then the same process is
repeated in the next phase until physiological maturity has been reached. Thirdly, it
counts the number of calendar days needed to complete each phase, and outputs
this information as DAS (days after sowing). Finally, it optimizes the desirable pa-
rameters by minimizing the differences between predicted and measured values
using a stochastic method (see below).

The derived parameters from the optimization program were converted into
APSIM format, “x/y pairs”, using the following set of equations:

X ¼ Pcrit þ f =Psen (2)

Y ¼ ajðTo � TbÞ=ð1� f Þ (3)

where f ¼ 0, 0.25, 0.50 and 0.75 (weighing factor to generate four “x/y” values);
Pcrit ¼ critical photoperiod; Psen ¼ photoperiodic sensitivity; To ¼ optimum tem-
perature; Tb ¼ base temperature; ai ¼ optimum days and it can be a2 or a3 or a4 or a5
(see Table 1 for details).
and an optimization tool to calibrate phenology of short-day species
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Table 2
Details of the published studies used in this analysis.

References Years Location Latitude (�N) Maturity group # cultivars # dataa Phenological datab Set number

Hoogenboom et al., 2012
(DSSAT e Database)

1979 Iowa 42.0 2.7e3.9 5 9 VE, FL, SD, PM 1
1988
1997

Edwards and Purcell, 2005 2001 Arkansas 36.1 00e6 8 24 VE, FL, PM 2
2002
2003

Robinson et al., 2009 2006 Indiana 40.5 2.6e3.7 3 36 VE, FL, PM 3
2007

Setiyono et al., 2007 2004 Nebraska 40.8 0.8e4.4 10 43 VE, FL, PM 4
2005

Zhang et al., 2004,c 2000 Mississippi 33.1 3.4e5.9 6 129 VE, FL, PM 5
Bastidas et al., 2008 2003 Nebraska 40.8 3.5 1 8 FL, PM 6

2004
De Bruin et al., 2010 2007 Iowa 42.0 2 1 10 VE, FL 7

2009
Osborne and Riedell, 2006 2002 S. Dakota 44.3 1 1 3 FL 8

2003
2004

Fermaha et al., 2012 2008 Illinois 40.1 2.8e3.4 2 2 FL 9
2009

Heatherly and Smith, 2004 2002 Mississippi 33.4 4e5 2 16 FL 10
2003

a Refers to the number of environments: combination of sowing time � year � location � cultivar for each study.
b VE: emergence; FL: flowering; SD: start of the seed fill; PM: physiological maturity.
c The reported data were average values across 4 experimental years for a number of cultivars.
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The R code reads maximum and minimum temperature values from a csv file
and days of phenological observations from a second csv file. We provide example
files in the Supplementary materials (Tables S1 and S2). Within the code we have
incorporated starting values for different soybean maturity groups (Table 3).

2.3.4. The parameter estimation procedure
Preliminary optimization attempts and analysis of the objective function

revealed that the use of standard optimization algorithms (e.g. ‘Nelder-Mead’) was
not appropriate due to the non-smooth objective function which resulted in most
cases in a missing Hessian matrix (i.e. it could not be computed). Therefore, we
developed a custom Markov chain Monte Carlo algorithm (MCMC; Givens and
Hoeting, 2005). We chose this approach for two reasons: it is more robust than
the optimization algorithm and it allows for a more flexible estimation of the pos-
terior distribution of the parameters given the data. This works by generating values
from proposal distributions and accepting or rejecting values depending onwhether
they generate values consistent with a distribution of the parameters given the data
(Givens and Hoeting, 2005). From these distributions we estimated the parameters
for the soybean model from the median of the posterior distribution. The algorithm
produces candidate values for the parameters from independent normal distribu-
tions. The starting values from Table 3 were used as the means of the distributions
and the standard deviations are derived from the suggested ranges (Table 3). The
standard deviations of the proposal distributions vary dynamically during the chain
progress through a tuning parameter (scale). This scale parameter is allowed to
increase when the proposed move is rejected and is reduced when a move is
accepted. This usually results in a reasonable acceptance rate. We chose not to
include strong priors on the estimation method, but this could be incorporated in a
future version. The chains were run for 10,000 iterations (Fig. S2). For calculating
summary statistics we used a burn-in period of 1000 iterations. The convergence of
the algorithm was assessed visually and also using Gelman diagnostics (Gelman
et al., 2004) with a value between 1 and 1.2 considered as acceptable. In addition,
the model efficiency (see statistics) was also used to evaluate the agreement be-
tween simulations and observations. The R code is available upon request.

2.3.5. Calibration protocols
We performed three types of calibration in order to judge the performance of

the code, get a better understanding of how parameters interact among each other
and provide suggestions for appropriate use of the code:

1. manual or hand-calibration in which the following parameters were allowed to
change, if needed: a3, [a4 þ a5], Pcrit1, Psen1, Pcrit2, and Psen2 within a reasonable
range (�15% for Pcrit and Psen, � 5 d for a3, and �10 d for the combined [a4 þ a5]
parameter). The manual calibration was done first and used later to judge
whether the MCMC procedure provided reasonable estimates.

2. automated calibration in which two parameters were set for optimization: a3
and [a4 þ a5]. When the model fit was satisfactory (judged by the Gelman di-
agnostics and other statistical criteria described below) then the optimization
process was ended.
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3. automated calibration in which three parameters were set for optimization: a3,
[a4 þ a5], and Pcrit.

This protocol was followed for datasets 1, 2, 3, 4, 5, and 6 inwhich both flowering
and maturity data were available (Table 2). For the datasets 7, 8, 9, and 10 in which
flowering date was available (Table 2), we optimized the a3 parameter only.

2.3.6. APSIM soybean model configuration
In total 280 simulations were conducted in APSIM soybean (version 7.4). Each

simulation refers to a particular combination of sowing time, year, cultivar and
location (Table 2). Because this study investigates phenology prediction under non-
limiting conditions, the soil profiles used are not important. We developed APSIM
soil profiles (necessary to run simulations) for each location similarly to
Archontoulis et al. (2014). We applied irrigation when necessary (e.g. Missouri) to
allow the crop to complete the cycle and we also relaxed the “node_sen_rate”
parameter to avoid crop death due to total leaf senescence.

2.4. Statistics

The goodness of fit was assessed by calculating the root mean square error
(RMSE, the lower the value the better), the relative absolute error (RAE, the lower
the value the better) and the modelling efficiency (ME, the higher the value the
better). The equations can be viewed in Archontoulis and Miguez (2013) and for
more details see Wallach et al. (2006).

3. Results

3.1. The proposed methodology

Table 4 shows that our methodology to calibrate the APSIM
soybean phenology module is robust and works well, irrespectively
of the calibration method used (manual versus automated). Both
calibration methods resulted in substantial improvements in soy-
bean phenology prediction compared to the uncalibrated model
(Table 4). On average across the entire dataset (n ¼ 280), RAE was
below 1%, and the RMSE was 3.3 d and 6.1 d for flowering and
physiological maturity, respectively. The ME was 0.90 and 0.87 for
flowering and physiological maturity, respectively.

3.2. Manual versus automated calibration

The automated calibration methods although being constrained
by the number of parameters to optimize (see 2.3.5 section)
and an optimization tool to calibrate phenology of short-day species
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Table 3
Starting values used for manual and automated model calibration. MG ¼ maturity
group, Pcrit ¼ critical photoperiod, Psen ¼ photoperiodic sensitivity, aj ¼ optimum
days (for details see Table 1). Initial parameter values were taken from Boote et al.
(2003). The aj parameters were re-analyzed (sensitivity analysis and preliminary
calibration using the data set# 2 from Table 2) to fit APSIM phenological phases.

MG Pcrit Psen a1 a2 a3 a4 a5 a6

(hour) (1/hour) Optimum days (d)

00 14.35 0.148 5 5 5.0 11.2 22.8 1
0 14.10 0.171 5 5 5.6 11.7 23.8 1
I 13.84 0.203 5 5 6.0 11.9 24.2 1
II 13.59 0.249 5 5 6.4 12.3 25.0 1
III 13.40 0.285 5 5 8.0 12.7 25.7 1
IV 13.09 0.294 5 5 9.5 13.2 26.7 1
V 12.83 0.303 5 5 11.5 13.5 27.5 1
VI 12.58 0.311 5 5 12.5 13.9 28.2 1

Table 4
Evaluation of goodness-of-fit among uncalibrated (using starting values from
Table 3), manual calibrated and two automated calibration methods. In the manual
calibration, the parameters a3, [a4 þ a5], Pcrit1, Pcrit2, Psen1 and Psen2 were allowed to
changewithin a reasonable range (see 2.3.5 section in theM&M). In the automated 1
calibration, the parameters a3 and [a4 þ a5] were set for optimization. In the auto-
mated 2 calibration, the parameters a3, [a4 þ a5] and Pcrit were set for optimization.
ME¼modelling efficiency; RMSE ¼ root mean square error; RAE¼ relative absolute
error.

Set# Calibration
method

Flowering Physiological maturity

ME
(0e1)

RMSE
(d)

RAE
(%)

ME
(0e1)

RMSE
(d)

RAE
(%)

1 Uncalibrated �0.95 8.49 9.13 �2.80 15.77 9.55
Manual 0.91 1.79 0.75 0.96 1.56 0.50
Automated 1 0.86 2.23 0.79 0.90 2.53 0.48
Automated 2 0.89 2.02 0.44 0.90 2.47 0.06

2 Uncalibrated 0.84 5.71 2.41 0.88 7.23 0.59
Manual 0.86 5.43 2.10 0.93 5.48 0.25
Automated 1 0.86 5.37 1.74 0.93 5.51 0.49
Automated 2 0.89 4.76 1.40 0.97 3.90 0.38

3 Uncalibrated 0.24 11.84 21.4 0.65 10.44 6.69
Manual 0.97 2.37 1.46 0.92 5.18 0.41
Automated 1 0.97 2.52 0.73 0.88 6.23 3.04
Automated 2 0.97 2.38 1.90 0.85 6.88 2.95

4 Uncalibrated �3.70 14.62 28.78 �0.44 14.53 10.05
Manual 0.34 5.45 4.43 0.87 4.39 0.68
Automated 1 0.64 4.01 3.41 0.90 3.83 0.88
Automated 2 0.68 3.79 3.60 0.92 3.38 0.90

5 Uncalibrated �0.04 8.87 16.44 0.77 7.02 0.39
Manual 0.87 3.11 0.81 0.74 7.52 0.37
Automated 1 0.90 2.74 3.39 0.80 6.72 0.54
Automated 2 0.91 2.66 2.24 0.84 6.02 0.02

6 Uncalibrated �1.43 10.25 18.94 �3.01 20.61 16.77
Manual 0.91 1.97 0.52 0.49 7.35 0.91
Automated 1 0.91 2.06 0.76 0.57 6.73 0.38
Automated 2 0.88 2.31 1.57 0.54 6.96 1.11

7 Uncalibrated �0.01 8.16 16.14 ea e e

Manual 0.78 3.79 1.82 e e e

Automated 1 0.77 3.86 2.03 e e e

Automated 2 ndb nd nd e e e

8 Uncalibrated �0.05 5.71 10.23 e e e

Manual 0.95 1.29 0.62 e e e
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performed equally or better compared to the manual calibration as
indicated by the summary statistical indexes (Table 4). Examination
of the statistical indexes for each individual dataset did not reveal a
consistent pattern (as a function of number of data or location) that
would explain why the manual method performed better in some
cases and the automated method performed better in others. Most
likely the inclusion of additional parameters in the manual cali-
bration provided the model with advanced flexibility in fitting the
data. However, given the restrictions imposed by a manual cali-
bration (i.e. difficult to replicate, time consuming, tedious, requires
skilled knowledge, and the fact that a good fit was achieved by
adjusting only two or three input parameters) we propose use of
the automatedmethods. In this way good behaviour of the model is
ensured.

Between the two automated methods, the 3-parameter esti-
mation was slightly superior compared to the 2-parameter
(Table 4), but it was not a substantial improvement. Chain
convergence according to the Gelman diagnostics tended to be
better in the 2-parameter vs. the 3-parameter method. It is very
Fig. 2. Comparison of estimated days to flowering and to physiological maturity from
the APSIM model and the R code for a particular dataset (Edwards and Purcell, 2005;
n ¼ 2 � 24 ¼ 48 data-points). Different symbols and colours refer to different
phenological stages and maturity groups, respectively.

Automated 1 0.85 2.16 2.57 e e e

Automated 2 nd nd nd e e e

9 Uncalibrated �2.61 5.70 4.28 e e e

Manual 1.00 0.00 0.00 e e e

Automated 1 0.94 0.71 1.21 e e e

Automated 2 nd nd nd e e e

10 Uncalibrated 0.27 7.80 15.07 e e e

Manual 0.88 3.12 1.51 e e e

Automated 1 0.90 2.93 3.86 e e e

Automated 2 nd nd nd e e e

All Uncalibrated 0.13 10.08 17.32 0.63 10.25 3.82
Manual 0.88 3.68 0.71 0.84 6.67 0.33
Automated 1 0.91 3.25 2.17 0.87 6.01 0.35
Automated 2 0.92 3.08 2.34 0.89 5.55 0.66

a No data available for physiological maturity (Table 2).
b The a3 parameter was optimized (automated 1) when only flowering data were

available.
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likely that in order to optimize three parameters more with in-
season phenological observations are needed for a more robust
estimation. When flowering data were available, then we opti-
mized only the a3 parameter (Table 1). In general, if datasets with a
narrow range of environments are used, the parameters that
determine photoperiod response in soybean (Pcrit and Psen) are not
likely to be robust enough for use in environments outside the
calibration range.

In this study we provide estimates derived from the 3-
parameter (sets 1, 2, 3, 4, 5 and 6) and 1-parameter (sets 7, 8, 9,
10) optimization method. Table 5 presents the parameter estimates
for 40 soybean cultivars and Table S3 (in supplementary materials)
the associated confidence intervals. Fig. 3 compares starting and
and an optimization tool to calibrate phenology of short-day species
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Table 5
Phenological parameter estimates (the confidence intervals are given in the
Supplementary Table S3) for 40 soybean cultivars derived from the automated
calibration methods. MG ¼ maturity group, Pcrit ¼ critical photoperiod,
Psen ¼ photoperiodic sensitivity, aj ¼ optimum days (for details see Table 1). Empty
cells indicate lack of physiological maturity data.

MG Cultivar name Parameters

Pcrit Psen a3 a4 a5 Set

(hour) (1/hour) Optimum days (d)

00 Triala 14.430 0.148 3.40 10.80 21.62 2
0 Lamberta 14.293 0.171 4.68 11.04 22.11 2
0.8 Asgrow0801 14.243 0.197 2.15 11.95 23.93 4
1 IA 1006a 14.373 0.203 6.78 12.94 25.92 2
1 Pioneer 91B01 13.840 0.203 2.80 e e 8
1.5 Dekalb1552 14.517 0.226 4.51 15.12 30.29 4
2 IA 2008a 13.917 0.249 6.47 14.49 29.02 2
2 K-283 13.590 0.249 2.97 e e 7
2.5 U01390224 14.070 0.267 3.79 15.23 30.51 4
2.6 Pioneer 92M61 13.771 0.271 3.54 13.14 26.32 3
2.7 Krucr 13.864 0.274 6.54 12.58 25.54 1
2.7 Elgin 13.573 0.274 3.68 11.69 23.73 1
2.8 HiSoy 2846 13.438 0.278 10.1 e e 9
3 Wayne 13.544 0.274 7.87 10.75 21.83 1
3 Macona 14.050 0.285 8.35 15.16 30.36 2
3 NE3001 13.403 0.285 3.12 12.64 25.31 4
3.1 Averageb 13.628 0.286 2.21 13.27 26.57 4
3.2 Becks 321NRR 13.451 0.287 3.62 12.96 25.96 3
3.2 Averagec 13.606 0.287 1.98 13.31 26.66 4
3.3 Averaged 13.464 0.288 1.53 13.24 26.52 4
3.4 Averagee 13.463 0.289 4.57 12.11 24.25 4
3.4 Averagef 13.553 0.289 3.81 15.67 31.39 5
3.4 Pioneer 93M42 13.276 0.289 4.53 e e 9
3.5 Averageg 13.299 0.290 4.08 11.97 23.98 6
3.6 Stine 13.650 0.290 8.09 12.13 24.62 1
3.6 U98307162 13.298 0.290 4.81 12.54 25.13 4
3.7 Becks 367NRR 13.265 0.291 3.33 12.63 25.31 3
3.9 Williams 13.438 0.293 6.70 12.05 24.46 1
3.9 U98311442 13.355 0.293 4.00 12.29 24.61 4
3.9 Averagef 13.339 0.293 5.30 15.68 31.41 5
4 Pioneer 94B01a 13.054 0.294 6.12 14.16 28.35 2
4 Averageh 13.090 0.294 4.62 e e 10
4.2 Dekalb4251 13.482 0.296 3.79 15.90 31.84 4
4.4 Averagef 13.206 0.298 6.57 15.94 31.92 5
4.9 Averagef 13.118 0.302 8.25 16.45 32.95 5
5 Hutchesona 12.575 0.303 11.9 12.61 25.25 2
5 Averagei 12.830 0.303 10.2 e e 10
5.4 Averagef 12.899 0.306 8.67 16.55 33.15 5
5.9 Averagef 12.724 0.310 10.3 16.10 32.24 5
6 NK 622a 12.392 0.311 11.8 11.67 23.37 2

a The listed cultivars were used in all the experimental years: 2001, 2002 and
2003. In 2002, the researchers used two cultivars for each maturity group. The
additional cultivars used in 2002 were: Jim (MG OO), AC Comoran (MG O), MN 1801
(MG 1), Dwight (MG 2), Pana (MG 3), MPV 437 (MG 4), Caviness (MG 5) and Desha
(MG 6). For details, see Edwards and Purcell (2005).

b Average parameter values from three cultivars: Dekalb 3152, Latham 1067RR
and NEX8903.

c Average parameter values from two cultivars: Krueger 323RR and NE3201.
d Average parameter values from two cultivars: KAUP 335 and Pioneer 93B63.
e Average parameter values from three cultivars: Asgrow 3401, Pioneer 93B47

and Stine 3632.
f Average parameter values frommany cultivars (see Table 2 in Zhang et al., 2004).
g Average parameter values from 14 cultivars: Asgrow AG3401 (MG 3.4), Dekalb

DKB 31-52 (MG 3.1), Kaup 335 (MG 3.3), Kruger K323 þ RR (MG 3.2), Latham
1067RR (MG 3.1), NE3001 (MG 3.0), NE3201 (MG 3.1), NEX8903 (Mg 3.1), U98-
307162 (MG 3.4), U98-307917 (MG 3.4), U98-311442 (MG 3.9); Pioneer 93B36
(MG 3.3), Pioneer 93B47 (MG 3.4), Stine 3632-4 (MG 3.6).

h Average parameter values from two cultivars: Asgrow AG4403 and Hombeck
HBK4891.

i Average parameter values from two cultivars: Asgrow AG5701 and Pioneer
P9594.

Fig. 3. Comparison between starting values and final estimates for three parameters:
Pcrit (critical photoperiod; top panel), a3 (optimum days from floral initiation to
flowering; middle panel), and [a4 þ a5] (optimum days to complete the grain fill
period; lower panel).
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final parameter estimates. The final parameters tended to have
higher Pcrit values (about 0.22 h), lower a3 values (about 2.5 d),
higher [a4 þ a5] values (about 1.4 d) compared to the starting
values.
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3.3. Flowering

Fig. 4 illustrates the goodness of fit for the flowering data across
a range of environmental conditions (Table 2). The distribution of
the data around the 1:1 line did not indicate any bias. In general, the
model simulated flowering DAS with an RMSE of 3 d and RAE of
2.3%. Among the datasets, some difficulties were encountered in
fitting the data reported in set 5 (Zhang et al., 2004); which is
attributed to the fact that these data represent average values
across four experimental years for a number of cultivars.
and an optimization tool to calibrate phenology of short-day species
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Fig. 4. Simulated versus measured days to flowering (as days after sowing; DAS) for each experimental dataset (see Table 2 for references) including also a summary plot. The
diagonal dotted lines are 1:1. Statistics are presented in Table 4.
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3.4. Physiological maturity

Fig. 5 illustrates the agreement between simulated and
observed DAS to physiological maturity. The model performed very
well in all cases (RAE¼ 0.6%), except Indiana (Robinson et al., 2009)
and Mississippi (Zhang et al., 2004), in which a systematic under-
estimation and a large variability around the 1:1 linewere detected,
respectively. In these two datasets the RMSE was 6.8 d and 6.0 d,
respectively, still close to the average RMSE of 5.5 d. For the Indiana
dataset the manual hand-calibration method resulted in better fits
(Table 4) indicating that use of different Pcrit and Psen parameters for
pre- and post-flowering phases in some cases might be important.

3.5. Start grain filling

Our optimization code utilizes the assumption that the physi-
ological days (a4 parameter) to complete the FL_SD phase are
about 33% of the physiological days (a4 þ a5 parameter) to com-
plete the combined FL_SD þ SD_END phase. We preferred relying
on this assumption and optimizing the combined [a4 þ a5]
parameter rather than keeping one parameter constant and opti-
mizing the other one when no information exists for the start
grain fill phase. Fig. 6 illustrates grain dry matter accumulation
over time (observed versus simulated data from set 1) and shows
that our assumption is reasonable for maturity groups from 2.7 to
Please cite this article in press as: Archontoulis, S.V., et al., A methodology
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3.9. A common problem in evaluating this stage precisely is that
field observations on seed weight are usually taken every 2e3
weeks, which makes the estimation of this particular day quite
difficult (Fig. 6). In general, accurate quantification and prediction
of the start grain fill stage has more uncertainty associated with it
compared to the uncertainty in flowering or physiological maturity
stages (see Section 4.3).
3.6. Predicted soybean adaptability and productivity in the USA

Fig. 7 illustrates simulated flowering, physiological maturity and
relative yield for eight soybean maturity groups across three loca-
tions. The model predictions are in accordance with what is known
for soybean adaptability and productivity in different locations
across USA (e.g. Zhang et al., 2007; Pedersen, 2009). In this sensi-
bility test we used default parameter values for different maturity
groups, which can be regarded as “generic coefficients” (Table 3).
When we repeated the simulation exercise by considering slightly
different starting values based on the trends indicated in Fig. 3 (see
also Section 3.2), the simulated patterns did not vary much. For the
relative seed yield predictions, we had set the cultivar specific pa-
rameters “y_hi_incr” and “y_hi_max_pot” to 0.01 (d�1) and 0.5
(g g�1), respectively across cultivars. In other words, only the
phenological parameters were varied among the soybean cultivars.
and an optimization tool to calibrate phenology of short-day species
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Fig. 5. Simulated versus measured days to physiological maturity (as days after sowing; DAS) for each experimental dataset (see Table 2 for references), including also a summary
plot. The diagonal dotted lines are 1:1. Statistics are presented in Table 4.
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4. Discussion

4.1. Towards simplifying phenology calibration

In line with the general effort towards simplifying calibration of
phenological modules (Mavromatis et al., 2001; Setiyono et al.,
2007; Jones et al., 2011), we developed a new methodology and
an MCMC approach that can be used to derive parameter estimates
to facilitate parameterization of the multiple input parameter
phenology module (generic PLANT) within the APSIM simulation
platform. We showed that prediction of soybean development
stages (Figs. 4e6) can be achieved by using information onmaturity
group, flowering and physiological maturity only, information
which should be readily available. The proposed methodology is
expected to assist calibration of all the short-day species included
in the APSIM PLANT platform, and especially legumes. Some pa-
rameters developed for soybean have the potential to be shared
with other legume species following the approach of Wang et al.
(2002). In general, this study expands the application potential of
the APSIM-soybean model.

Our parameter estimates for 40 soybean cultivars differ from the
initial starting values (Fig. 3). The departures from the initial starting
values were not consistent and largely cultivar specific, e.g. see the
data scatter for the cultivars belong to thematuritygroup3 (Fig. 3). In
future soybeanphenologycalibrationexerciseswerecommendusers
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to start overwith the values reported inTable 3 (generic coefficients)
and estimate cultivar specific parameters using the automated
methods.When themanual calibration is used, the trends showed in
Fig. 3 can help users to identify cultivar specific parameter values. In
case of no prior available information, users can use the starting
values (Table 3) for a good approximation of the soybean pheno-
logical stages across regions and maturity groups (Fig. 7).

4.2. Evaluating phenology predictions

In evaluating the performance of the model, it is necessary to
consider uncertainties associated with the observed data. In this
study, we can identify uncertainty associated with the spatial error
due to field variability and temporal error due to the discontinuity
of the Fehr and Caviness (1977) soybean staging systemwhich was
used to assign phenological events in the field. In addition, there is
one more source in our study, which is the uncertainty associated
with the interpretation of the published data, especially for the data
extracted from figures (e.g. Robinson et al., 2009), and the fact that
some published data were reported as average values across MG or
years (e.g. Zhang et al., 2004).

Given these uncertainties, the overall performance of the model
is characterized as very good (Table 4). The observed RMSE values
(about 3 d for flowering and 6 d for maturity predictions) were
close to RMSE values reported in soybean phenology prediction
and an optimization tool to calibrate phenology of short-day species
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Fig. 6. Measured (cycles) and APSIM simulated grain yield (lines) over time for eight experiments conducted in Iowa covering a range of soybean maturity groups from 2.7 to 3.9.
Each panel refers to a combination of sowing time, cultivar, location and year (set 1 in Table 1; data from Hoogenboom et al., 2012).
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studies (Mavromatis et al., 2001; Setiyono et al., 2007; Torrion et al.,
2011; Jones et al., 2011). An advantage of our study over the
aforementioned ones, is the wide range of environments used for
calibration (from 33� to 46�N; n ¼ 280; Table 2).

In this study, we did not follow the traditional scheme of
dividing the data into calibration and validation sets. Instead, we
used the entire database to develop robust phenological parame-
ters and to demonstrate the functionality of the proposed meth-
odology. We evaluated only goodness of fit. Similar approaches
have been used in the literature (Carberry et al., 2001; Turpin et al.,
2003; Farre et al., 2004).

4.3. Assumptions and recommendations

In the literature, data on flowering and physiological maturity
are largely available; data on the start of seed filling are sporadically
available while data on the end of juvenile and floral initiation are
very rare. For this reason our methodology and optimizer were
built around flowering and maturity data. It should be noted that
the optimization code allows incorporation of additional pheno-
logical observations if they exist.

Onedifficulty noted in this studywas the correct interpretation of
the start of seed filling stage. According to the most commonly used
staging system for soybean (Fehr and Caviness, 1977), the R4 stage
(pod is 2 cm long)marks the beginning of the start of seed fill period
and the R5 stage (seed is 3 mm long) indicates the beginning of the
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linear phase in seed filling (rapid accumulation of dry matter; see
Fig. 6). Recording the dates of R4 or R5 requires the observer tomake
a quantitative assessment of pod length or seed diameter, whereas
the potential intrinsic error might be significant in the field (Torrion
et al., 2011). In general, for the majority of crop species, use of
morphological observations (e.g. seed diameter) to approximate
seed physiological activity (seed weight) is associated with large
uncertainty (e.g. Archontoulis et al., 2010). Introducing such uncer-
tainty into crop models is risky. Therefore, we did not include
morphological data on the start of grain fill period in our analysis,
which data were available in some studies (Zhang et al., 2004;
Bastidas et al., 2008; Robinson et al., 2009, Table 2). Instead, we
merged the FL_SD and SD_END phase into one phase and estimated
the combined [a4 þ a5] parameter (Table 1). The value of 0.33 was
later used to partition the combined parameter into a4 and a5. This
value was derived from a sensitivity analysis and proved to be
reasonable for soybeanMG from2.7 to 3.9 (Fig. 6) aswell as for all the
MG according to a sensibility test (Fig. 7). The choice of this parti-
tioning parameter is critical for accurate estimation of seed yield.

APSIM makes a distinction between the end of seed fill period
and physiological maturity (Eq. (1)), while many other models as-
sume that these two phases coincide (SOYDEV; CROPGRO-soy-
bean). Data to directly evaluate this stage were not available, so an
arbitrary value of one physiological day was assumed for the
parameter a6 (Table 1). This parameter has little impact on
phenology prediction and should be considered as an option during
and an optimization tool to calibrate phenology of short-day species
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Fig. 7. Predicted soybean adaptability (upper panel: flowering time; middle panel: physiological maturity) and productivity (lower panel: relative yield; with 1 being the maximum
yield) for eight maturity groups (MG) in three USA States (MO: Missouri; IA: Iowa; MN: Minnesota) using the updated APSIM-soybean model. Sowing time was May 10 in all
locations and irrigation applied in Missouri only. The length of each box indicates the variability in model predictions created by replicating the simulation exercise for 32 years
(1980e2011). Invisible bars or bars touching the x-axis in the middle panel, indicate that the physiological maturity was not reached or high risk of failure, respectively.
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the second stage of model calibration which is fitting the yielding
data. If the simulated yield is higher than the observed, an option is
to increase the a6 and at the same time to decrease the [a4 þ a5] by
approximately the same amount to maintain a good prediction of
physiological maturity.

4.4. The potential of the optimization algorithm

The way that the R code was written allows researchers to
explore a number of hypotheses related to temperature � photo-
period interactions in short day species and especially soybean.
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Depending on the research objective and data available, they can
optimize with minor modifications in the R code any of the
following parameters: Tb, To, Tm, sun_angle, Pcrit, Pcrit1, Pcrit2, Psen,
Psen1, Psen2, a1, a2, a3, a4, a5 and a6 (Table 1), as well as the shape of
the temperature response function (Fig. S1 in the supplementary
materials). It can facilitate phenology prediction up to flowering
or throughout the cropping cycle. The R code can be modified to
estimate parameters for long day species, can be extended to ac-
count for vernalization and/or water stress effects on phenology.

The optimization tool was built outside the APSIM platform
(stand-alone tool in R), meaning that it can be also used by
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individual researchers to examine scientific hypotheses or to esti-
mate phenological parameters for short-day species of interest
independently of a simulation model.

Our optimization codewas designed to read similar input files as
those used by DEVEL2 (Holzworth and Hammer, 1996) to allow
data exchange between the two optimizers. The differences be-
tween the proposed optimizer and DEVEL2 are: a) captures the
whole crop life cycle and accounts for temperature � photoperiod
interactions throughout the crop cycle (Eq. (1)), while DEVEL2 had
been applied to predict phenology up to flowering stage (Kumar
et al., 2009; Cave et al., 2013 for recent applications); b) utilizes
the thermal time approach and includes 3 options for temperature
response functions, while DEVEL2 includes both thermal time
method and the multiplicative method and 9 options for temper-
ature response functions; c) utilizes stochastic methods in param-
eter estimation (Markov chain Monte Carlo algorithm), while
DEVEL2 uses the simplex method; and d) our code is written in R
while DEVEL2 is in FORTRAN 77.

4.5. Limitation of the current approach

The present methodology and the optimizer do not include
(water and nitrogen) stress effects on the rate of development
although such an effect may exists (Brevedan and Egli, 2003;
Setiyono et al., 2007 and references therein). Theoretically, it re-
quires observations to be made under non-limiting conditions in
order to obtain robust parameter values. If stress has occurred
during plant growth and has affected the rate of development, then
the estimation process will attempt to set parameter values to
compensate for water, nutrient, pest or disease stresses (Jones et al.,
2011). Themajority of the observed data used in this study (Table 2)
were collected under field conditions in which pest or diseases had
been controlled efficiently. Field experiments were well irrigated in
southern US States and Nebraska or conducted in areas with suf-
ficient precipitation for soybean growth (US Midwest). Therefore, it
is believed that our parameter estimates for soybean are robust
(Table 5).

5. Conclusions

We demonstrated a potential avenue towards calibrating a
multi-parameter input phenological model that accounts for
temperature� photoperiod interactions throughout the crop cycle,
from readily available information on flowering and physiological
maturity. By making use of an optimization tool and literature in-
formation we developed phenological parameters for 40 soybean
cultivars covering maturity groups from 00 to 6 for the APSIM
soybean model. Given that phenology captures much of the geno-
typic variation, the potential applicability of the APSIM-soybean
model has been expanded significantly, which is of particular in-
terest in the new era of cropmodel application; i.e. upscale process-
based point models across regions. Our methodology and optimi-
zation code are generic, hence they can be applied to calibrate
phenology of all the short-day species included in the APSIM PLANT
model. Their combined use can also serve as a template towards
developing calibration protocols in other modelling platforms.
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