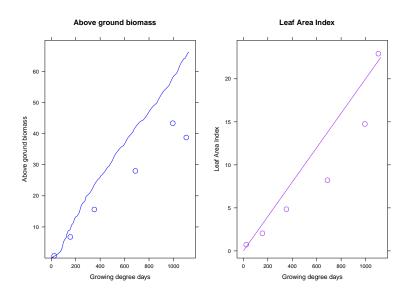
Intro to Optimization AGRON 590 MG: Crop-Soil Modeling


Fernando E. Miguez

Iowa State University

Nov 5, 2010

How do we improve model-data agreement?

Options for Improving model agreement

- Tweaking the model
- Brute force
- Mathematical approach

Options for Improving model agreement

- Tweaking the model
- Brute force
- Mathematical approach

Options for Improving model agreement

- Tweaking the model
- Brute force
- Mathematical approach

Optimization

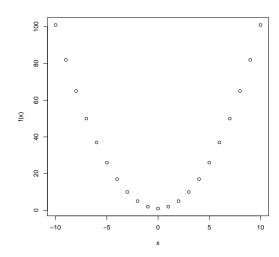
Mathematical Definition Minimization example

- Given $f:A \to \Re$
- An element x_0 in A such that $f(x_0) \leq f(x)$ for all x in A

First problem: define the function

- This function is known as the *objective function* in the optimization literature.
- It is common to define the residual sum of squares as the objective function.
- There are limitations to this objective function.

•

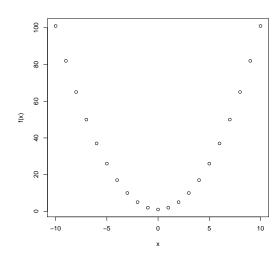

$$f(x) = x^2 + 1$$

 Visually f(x) is minimized at

_

$$\frac{df}{dx} = 2x$$

$$0 = 2x$$


•

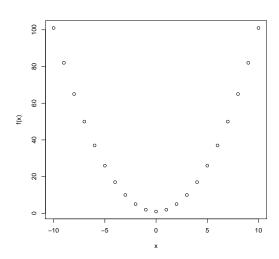
$$f(x) = x^2 + 1$$

• Visually f(x) is minimized at x = 0

$$\frac{df}{dx} = 2x$$

$$0 = 2x$$

•


$$f(x) = x^2 + 1$$

• Visually f(x) is minimized at x = 0

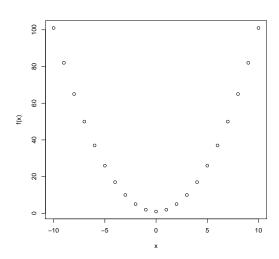
•

$$\frac{df}{dx} = 2x$$

$$0 = 2x$$

•

$$f(x) = x^2 + 1$$


• Visually f(x) is minimized at x = 0

۰

$$\frac{df}{dx} = 2x$$

•

$$0 = 2x$$

Can we use R to minimize this function?