1 Intro to R

A few first commands to get familiar with R

Introduction to R

R is a calculator

2 + 3

You can create variables in R

x <- 7.3
y <- pi

print(y, digits = 15)

R can be used as an object oriented language
This means all objects have classes
and methods can be written for each class

class(x)

x <- 1:20
y <- x * 3 + rnorm(20, sd = 2)

xyplot(y ~ x)

fit <- lm(y ~ x)
2 First steps in Crop Modeling: Leaf Number Appearance

Example of leaf appearance calculation

```r
library(lattice)

## Phyllochron for maize 25-55 degree days (ave. 40)

phyll <- 40
T.b <- 8 # Base temperature

## Temperature is in Fahrenheit
TempC <- (cmi$Temp - 32) * 5/9

## Coding exercise to calculate GDD
res.col <- numeric(length(TempC))

for(i in 1:length(TempC)){
  # Calculation goes here
}
```
tmp <- TempC[i] - T.b

if(tmp < 0){
 res.col[i] <- 0
}else{
 res.col[i] <- tmp
}
}

plot(res.col)

TTcum <- cumsum(res.col)

doy <- seq(from = 1, to = 365, by = 1)

xyplot(TTcum ~ doy,
 type = "l",
 ylab = "Cummulative Thermal Time",
 xlab = "Day of the Year")

How do we calculate the number of leaves?

First select a range of values plausible for leaf production

Day of crop emergence and tasseling

day1 <- 110 ## Apr 20

dayn <- 195 ## July 14

TTcum.sub <- TTcum[day1:dayn] - 258

LeafProd <- TTcum.sub %/% 40

xyplot(LeafProd ~ day1:dayn, type = "l")

Maize produces 16-23 leaves (Hay & Porter, 2006)
Could be up to 30 under the right conditions